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Abstract -- An efficient approach for sensitivity analysis of
lossy multiconductor transmission lines in the presence of non-
linear terminations, is described. Sensitivity information is
based on the recently developed closed-form matrix-rational
approximation based transmission-line model. The method en-
ables sensitivity analysis of interconnect structures with re-
spect to both electrical and physical parameters. An important
advantage of the proposed approach is that the derivatives of
the MNA matrices with respect to per-unit-length parameters
are obtained analytically.

I. INTRODUCTION

The ever increasing quest for higher-operating
speeds, miniature devices and denser layouts has made
the signal integrity analysis a challenging task. As sig-
nal frequencies are approaching the GHz range, the in-
terconnect effects such as delay, crosstalk, ringing and
distortion become the dominant factors limiting the
overall performance of microelectronic/microwave sys-
tems. At higher frequencies, the length of the intercon-
nect becomes a significant fraction of the operating
wavelength, and conventional lumped impedance models
become inadequate in describing the interconnect perfor-
mance and transmission line models become necessary [1]-
[7].

Recently, an efficient multiconductor transmission line
(MTL) model based on closed-form matrix-rational approx-
imation has become available [3]-[5]. It can also handle
lossy as well as frequency-dependent parameters. Applica-
tion of this new MTL model to the sensitivity analysis for
optimization of high-speed interconnects in the presence of
nonlinear terminations is presented in this paper.

II. CIRCUIT EQUATIONS WITH CLOSED-FORM MTL
MODEL

Distributed networks in the presence of nonlinear ele-
ments can be expressed as
N

C(px(p(t)+G(px(p(t)+kz1 Dy (1) + f(p(x(p(z)) = b(p(t) W
[y = Yi(s)Vy

where
. x(p(t) is a vector, which include node voltages

appended by independent and dependent voltage source
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currents, inductor currents, nonlinear capacitor charge
and nonlinear inductor flux waveform. G(p, C ¢ are con-
stant matrices describing the lumped memoryless and
memory elements of the network, respectively. b(p(t) is
a vector with entries determined by the independent
voltage and current sources. f(p(xcp(t)) is a vector

describing the nonlinear elements.

+ D= [di,j 0{o,1}1], is a selector matrix that maps
i (¢), the vector of terminal currents entering the inter-
connect subnetwork £, into the node space of the net-
work, where i O{1,...,n} , jO{1,...,2m;} and my
is the number of coupled signal conductors in subnet-
work k. N, is the number of distributed structures.

Y, (s) is the admittance parameters of interconnect & in

the Laplace domain. |, and V, represent the Laplace
terminal voltages and currents of interconnect k.

The distributed elements in (1) do not have a direct rep-
resentation in the time-domain, leading to mixed frequency/
time simulation difficulty. In order to overcome this prob-
lem, a closed-form MTL model based on matrix-rational
approximation has been recently proposed [3]-[5]. This in-
terconnect model is shown to be efficient, passive and suit-
able for passive model reduction techniques based on
congruent transformations [5]-[6]. Using this interconnect
macromodel, (1) can be expressed as

CIx(1)+ Gx(1) + 1(x(1) = b(®) @
where
N, -
C=G,+ T TWH Glyf
k=11
N, T
G=Cu+ I T cluf
k=11 (3)

Here the matrices G,, C,, f(x(#)) and b(#) are ob-
tained from G(p, C,, fcp(xcp(t)) and b(p(t) by appending
them by rows (and?or) columns that contain zeros to ac-
count for the extra state variables required for the stamp of
the transmission line. Thus, G,, C, and b(#) can be ex-
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pressed in the following block form

G, 0 c,0

00
b(r) = {bq)(‘)}
)

The indices i, k represent the i/ subsection of the
interconnect. The subsections of each interconnect are
obtained from the poles and zeros of the Padé rational
model of the exponential function. In the case of real
pole-zero subsections, they can be expressed as

Fx) = [fq,(xq,(z))
0

% g 0 e U
2a4 & K 2a0k K
A0,k p-1 0,k _
ck=| ° 7d, R 7d, Sy v
dy Ao 1 90,k d .0
2a0va1‘ 2d, R &g R‘ 2a0kGl‘D 0
| U U 0 0]
[ a, d;
2ay w0 2a 4 G 0
. 0 0 0 0
C =1|d, d
1 2a1L w0 Zak G 0
0,k 0,k
2d,
0 0 0 a—‘ .
0,k
o (5)

Similar expression can be derived for the case of
complex pole-zero subsection [4]-[5].

The matrices ; are selector matrices that map
the block stamps G; and C; to the rest of the net-
work. The matrices Rk, Ly, Ck and G}, are the per-unit-
length parameters of the K" multiconductor transmis-
sion line (MTL); d; is the length of the K" MTL; U in
the unity matrix; the variable a,, , is a predetermined
constants given by the Padé approximation.

It should be noted that the MNA matrices described
by (5) are obtained analytically in terms of per-unit-
length parameters and predetermined constants given by
the matrix-rational approximation. In the next section,
the sensitivity analysis of interconnect parameters is de-
rived using the above macromodel.

II1. SENSITIVITY ANALYSIS

Let A, be an interconnect parameter of the K" in-
terconnect. The sensitivity of the nonlinear network
with respect to A, is obtained by differentiating (2) with
respect to A, as

2

dC dx d x dG dx df dx
an, di " ana Tan, TG Tax v, 0 0 ©

Solution of (2) and (6) can be obtained by convert-
ing them to difference equations using integration for-
mulae such as backward Euler or trapezoidal rule (TR)
[8]. For example, if TR is used, the corresponding dif-
ference equations for (2) and (6) can be written as

C GDX f(Xn+1)_
O T 20 n+1t T -
€ _Goy _FX0) (Bneathy)
Ay 2070 "2 2
(7
mC G11+af(xn+1)[|axn+1 0 C GDX
vl 20X,,,, WoA, P VAR AL
DC GDaX o C GDX _laf(xn)%
T T 206A, Ton, A 2070 T23X. aA,
®)

Equations (7) and (8) represent the solution of the
original and sensitivity networks as described by (2) and
(6). The coefficients on the right side of (8) are all
known from the solution of (7). The variables
0f (X, +1)/0X,, 41 and 9f(X,)/0X,, are the Jaco-
bean matrices which can be obtained by solving (7). The
matrices 0C/0\, and dG/0A; are derived from the
stamp of the interconnect model as described below.

Calculation of dC/0A, and aG/dA,

To calculate the sensitivity of the network, the deriv-
atives of the MNA matrices are required with respect to
the interconnect parameter A, of subnetwork k. Differ-
entiating the MNA matrices of (3) with respectto A,

hle (T 0G/
T I g, ¥

) ©)

kT G «

L osuh o

koG k

The matrices aci" /0\, and aGik / 0\, are comput-
ed analytically in terms of per-unit-length parameters
and predetermined constants given by the matrix-ratio-
nal approximation. As an example, Table I shows how
these matrices are obtained for the real pole-zero sub-
section (5) for scalar interconnect parameters.

A similar strategy can be used for the complex pole-
zero subsections (details are not given due to the lack of
space).
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TABLE |
. k k
Calculation of dC; / 0\ and G, /0A,
aGr /0N, ack/on,
e G | r 1
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10000 2ay 2ay
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000l 000 0
K k (000 0
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9Ly 10000 0Ly Y
10000 000 a—k
0,k

Sensitivity with respect to physical parameters

In the case when A, represents a physical parameter
of the k™ interconnect, the sensitivity of the output
nodes can be obtained as follows:

M M oR:’ oL/
53 Z%Lﬁ e
k -:1]-:1@Rk’1 koL’ %M
o0x aG;§]+6x OCZJD
L j O\, i,j O\,
aGy ! % acy! %M O

(10)

IV. NUMERICAL EXAMPLES

A coupled interconnect system with a nonlinear di-
ode is shown in Fig. 1. Fig. 2 shows transient responses
of the far-end voltages corresponding to a 5 Volt input
pulse with rise/fall times 0.1ns and a pulse width of 1ns.
The sensitivities with respect to C;; for both the active
and victim lines are shown in Fig. 3 and 4, respectively.
The results of the proposed method are compared with
the perturbation of the lumped segment model [2] (re-
ferred to as SPICE Perturbation). Fig. 5 and 6 show the
sensitivities with respect to L;; for both the active and
victim lines. Both the proposed method and the pertur-
bation results are in good agreement.

It is to be noted that using the proposed method pro-
vides the following advantages. (1) Using the closed-
form matrix-rational approximation based macromodel
provides significant CPU advantages compared to
lumped segmentation model [4]. (2) Perturbation based
techniques can lead to inaccurate results (depending on
the magnitude of the perturbation). (3) In addition, the
nonlinear differential equations representing the per-
turbed network must be solved separately for every pa-
rameter of interest. However, in the proposed approach,
the sensitivity information with respect to all the param-
eters can be essentially obtained from the solution of the
original network. Table - II shows a comparison of sav-
ings in the main computational cost (in terms of total
number of LU decompositions) using the proposed ap-
proach versus the perturbation approach, for the above
example.

TABLE I
Computational Complexity: Proposed vs Perturbation
#of Perturbation (# LU Proposed (# LU
parameters decompositions) decompositions)
10 26455 2405

V. CONCLUSIONS

A new approach for sensitivity analysis of lossy
multiconductor transmission lines in the presence of
nonlinear terminations is described. Sensitivity informa-
tion is derived from the recently developed closed-form
matrix-rational approximation based transmission-line
model. The method enables sensitivity analysis of inter-
connect structures with respect to both electrical and
physical parameters, while providing significant compu-
tational cost advantages.
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Fig. 1: Coupled interconnect system
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